Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.949
Filtrar
1.
Stem Cell Res Ther ; 14(1): 325, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953266

RESUMO

BACKGROUND: Stromal vascular fraction (SVF) treatment promoted the regeneration of the intestinal epithelium, limiting lethality in a mouse model of radiation-induced gastrointestinal syndrome (GIS). The SVF has a heterogeneous cell composition; the effects between SVF and the host intestinal immunity are still unknown. The specific role of the different cells contained in the SVF needs to be clarified. Monocytes-macrophages have a crucial role in repair and monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2. METHODS: Mice exposed to abdominal radiation (18 Gy) received a single intravenous injection of SVF (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Intestinal immunity and regeneration were evaluated by flow cytometry, RT-PCR and histological analyses. RESULTS: Using flow cytometry, we showed that SVF treatment modulated intestinal monocyte differentiation at 7 days post-irradiation by very early increasing the CD11b+Ly6C+CCR2+ population in the intestine ileal mucosa and accelerating the phenotype modification to acquire CX3CR1 in order to finally restore the F4/80+CX3CR1+ macrophage population. In CX3CR1-depleted mice, SVF treatment fails to mature the Ly6C-MCHII+CX3CR1+ population, leading to a macrophage population deficit associated with proinflammatory environment maintenance and defective intestinal repair; this impaired SVF efficiency on survival. Consistent with a CD11b+ being involved in SVF-induced intestinal repair, we showed that SVF-depleted CD11b+ treatment impaired F4/80+CX3CR1+macrophage pool restoration and caused loss of anti-inflammatory properties, abrogating stem cell compartment repair and survival. CONCLUSIONS: These data showed that SVF treatment mitigates the GIS-involving immunomodulatory effect. Cooperation between the monocyte in SVF and the host monocyte defining the therapeutic properties of the SVF is necessary to guarantee the effective action of the SVF on the GIS.


Assuntos
Monócitos , Lesões Experimentais por Radiação , Fração Vascular Estromal , Animais , Camundongos , Tecido Adiposo , Intestinos , Macrófagos , Células Estromais , Lesões Experimentais por Radiação/terapia
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1815-1820, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37933660

RESUMO

OBJECTIVE: To observe the therapeutic effect of metformin on pathological pain in mice with radiation dermatitis and explore the underlying mechanism. METHODS: Thirty-two male adult ICR mice were randomized into normal control group, radiation dermatitis model group, metformin treatment (200 mg/kg) group and gabapentin (100 mg/kg) group (n=8).In the latter two groups, metformin treatment was administered after modeling via intraperitoneal injection and gabapentin by gavage on a daily basis for 16 days; the mice in the control group and model group received intraperitoneal injection of normal saline.After the last administration, radiation dermatitis was graded in each group.Mechanical withdraw threshold (MWT) and thermal withdrawal latency (TWL) of the mice were tested one day before and at 1, 4, 8, 12 and 16 days after modeling.Western blotting was used to measure the protein expression levels of p38MAPK, p-p38MAPK, NF-κB p65 and p-NF-κB p65 in the L4-L6 spinal cord, and the concentrations of IL-1ß, IL-6 and TNF-α in the spinal cord tissue were determined with ELISA. RESULTS: Compared with those in the control group, the mice in the other 3 groups showed obvious symptoms of radiation dermatitis after modeling (P<0.05), which were significantly alleviated by treatment with metformin (P<0.05).The mice in the model group exhibited significant decreases in MWT and TWL (P<0.05), which were improved by treatment with metformin and gabapentin (P<0.05).Compared with those in the model group, the levels of p-p38MAPK, p-NF-κB p65, IL-1ß, IL-6 and TNF-α in the spinal cord were significantly decreased in the mice after metformin treatment (P<0.05). CONCLUSION: Metformin can significantly ameliorate pathological pain symptoms in mice with radiation dermatitis possibly by inhibiting the activation of p38MAPK/NF-κB signaling pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Metformina , NF-kappa B , Radiodermatite , Animais , Masculino , Camundongos , Gabapentina/uso terapêutico , Interleucina-6/metabolismo , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Dor , Fator de Necrose Tumoral alfa/metabolismo , Metformina/uso terapêutico , Lesões Experimentais por Radiação/tratamento farmacológico , Radiodermatite/tratamento farmacológico
3.
Biomed Pharmacother ; 163: 114808, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146417

RESUMO

Radiotherapy is a prevalent treatment modality for thoracic tumors; however, it can lead to radiation-induced lung injury (RILI), which currently lacks effective interventions. ACT001, a prodrug of micheliolide, has demonstrated promising clinical application potential, yet its impact on RILI requires further validation. This study aims to investigate the radioprotective effects of ACT001 on RILI and elucidate its underlying mechanism. Sprague-Dawley rats were utilized to induce RILI following 20 Gy X-ray chest irradiation, and lung tissue inflammation and fibrosis were assessed using hematoxylin and eosin (H&E) and Masson staining. Lung injury, inflammation, and oxidative stress markers were evaluated employing commercial kits. Pyroptosis-related differentially expressed genes (DEGs) were analyzed using a microarray dataset from the Gene Expression Omnibus (GEO) database, and their functions and hub genes were identified through protein-protein interaction networks. Pyroptosis-related genes were detected via RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. The results demonstrated that ACT001 ameliorated RILI, diminished pro-inflammatory cytokine release and fibrosis, and mitigated the activation of the NLRP3 inflammasome while inhibiting pyroptosis in lung tissue. In conclusion, our study reveals that ACT001 can suppress NLRP3 inflammasome-mediated pyroptosis and improve RILI, suggesting its potential as a novel protective agent for RILI.


Assuntos
Lesão Pulmonar , Lesões Experimentais por Radiação , Ratos , Animais , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/patologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/prevenção & controle , Raios X , Inflamação
4.
Expert Opin Drug Discov ; 18(7): 797-814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073409

RESUMO

BACKGROUND: Animal models are vital for the development of radiation medical countermeasures for the prophylaxis or treatment of acute radiation syndrome and for the delayed effects of acute radiation exposure. Nonhuman primates (NHPs) play an important role in the regulatory approval of such agents by the United States Food and Drug Administration following the Animal Rule. Reliance on such animal models requires that such models are well characterized. METHODS: Data gathered from both male and female animals under the same conditions and gathered concurrently are limited; therefore, the authors compared and contrasted here the radiosensitivity of both male and female NHPs provided different levels of clinical support over a range of acute, total-body gamma irradiation, as well as the influence of age and body weight. RESULTS: Under matched experimental conditions, the authors observed only marginal, but clearly evident differences between acutely irradiated male and female NHPs relative to the measured response endpoints (rates of survival, blood cell changes, and cytokine fluctuations). These differences appeared to be accentuated by the level of exposure as well as by the nature of clinical support. CONCLUSION: Additional studies with both sexes under various experimental conditions and different radiation qualities run concurrently are needed.


Assuntos
Síndrome Aguda da Radiação , Lesões Experimentais por Radiação , Animais , Estados Unidos , Masculino , Feminino , Tolerância a Radiação , Modelos Animais de Doenças , Síndrome Aguda da Radiação/tratamento farmacológico , Macaca mulatta
5.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982722

RESUMO

Currently, there are no biomarkers to predict lethal lung injury by radiation. Since it is not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy. End points such as SPECT imaging of the lung using molecular probes, measurement of circulating blood cells and specific miRNA have been shown to change after radiation. Our goal was to use these changes to predict lethal lung injury in the rat model, 2 weeks post-irradiation, before any symptoms manifest and after which a countermeasure can be given to enhance survival. SPECT imaging with 99mTc-MAA identified a decrease in perfusion in the lung after irradiation. A decrease in circulating white blood cells and an increase in five specific miRNAs in whole blood were also tested. Univariate analyses were then conducted on the combined dataset. The results indicated that a combination of percent change in lymphocytes and monocytes, as well as pulmonary perfusion volume could predict survival from radiation to the lungs with 88.5% accuracy (95% confidence intervals of 77.8, 95.3) with a p-value of < 0.0001 versus no information rate. This study is one of the first to report a set of minimally invasive endpoints to predict lethal radiation injury in female rats. Lung-specific injury can be visualized by 99mTc-MAA as early as 2 weeks after radiation.


Assuntos
Lesão Pulmonar , MicroRNAs , Lesões Experimentais por Radiação , Lesões por Radiação , Humanos , Feminino , Ratos , Animais , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , MicroRNAs/genética , Biomarcadores , Lesões Experimentais por Radiação/diagnóstico por imagem
6.
J Ethnopharmacol ; 311: 116428, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY: To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS: The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS: TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION: Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.


Assuntos
Neoplasias do Colo , Lesões Experimentais por Radiação , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/prevenção & controle , Apoptose , Diarreia , Dor Abdominal
7.
Int J Radiat Biol ; 99(7): 1119-1129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794325

RESUMO

PURPOSE: To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE. METHODS: WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kg-1 d-1) for mitigation of lung and kidney DEARE when started 15 d after PBI. Rats were fed known amounts of IPW-5371 using a syringe, instead of delivery by daily oral gavage, sparing exacerbation of esophageal injury by radiation. The primary endpoint, all-cause morbidity was assessed over 215 d. Secondary endpoints: body weight, breathing rate and blood urea nitrogen were also assessed. RESULTS: IPW-5371 enhanced survival (primary endpoint) as well as attenuated secondary endpoints of lung and kidney injuries by radiation. CONCLUSION: To provide a window for dosimetry and triage, as well as avoid oral delivery during the acute radiation syndrome (ARS), the drug regimen was started at 15 d after 13.5 Gy PBI. The experimental design to test mitigation of DEARE was customized for translation in humans, using an animal model of radiation that was designed to simulate a radiologic attack or accident. The results support advanced development of IPW-5371 to mitigate lethal lung and kidney injuries after irradiation of multiple organs.


Assuntos
Síndrome Aguda da Radiação , Lesões Experimentais por Radiação , Humanos , Ratos , Feminino , Animais , Lesões Experimentais por Radiação/prevenção & controle , Medula Óssea/efeitos da radiação , Doses de Radiação , Pulmão/efeitos da radiação
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835431

RESUMO

Mitochondrion is an important organelle of eukaryotic cells and a critical target of ionizing radiation (IR) outside the nucleus. The biological significance and mechanism of the non-target effect originating from mitochondria have received much attention in the field of radiation biology and protection. In this study, we investigated the effect, role, and radioprotective significance of cytosolic mitochondrial DNA (mtDNA) and its associated cGAS signaling on hematopoietic injury induced by IR in vitro culture cells and in vivo total body irradiated mice in this study. The results demonstrated that γ-ray exposure increases the release of mtDNA into the cytosol to activate cGAS signaling pathway, and the voltage-dependent anion channel (VDAC) may contribute to IR-induced mtDNA release. VDAC1 inhibitor DIDS and cGAS synthetase inhibitor can alleviate bone marrow injury and ameliorate hematopoietic suppression induced by IR via protecting hematopoietic stem cells and adjusting subtype distribution of bone marrow cells, such as attenuating the increase of the F4/80+ macrophage proportion in bone marrow cells. The present study provides a new mechanistic explanation for the radiation non-target effect and an alternative technical strategy for the prevention and treatment of hematopoietic acute radiation syndrome.


Assuntos
Citosol , DNA Mitocondrial , Hematopoese , Mitocôndrias , Nucleotidiltransferases , Lesões Experimentais por Radiação , Animais , Camundongos , Citosol/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo
9.
Respir Res ; 24(1): 25, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694200

RESUMO

BACKGROUND: Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS: RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1ß on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS: NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1ß secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS: Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.


Assuntos
Inflamassomos , Lesão Pulmonar , Lesões Experimentais por Radiação , Animais , Camundongos , Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , NADP/metabolismo , NADP/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lesões Experimentais por Radiação/complicações , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo
10.
Int J Radiat Biol ; 99(2): 259-269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35583501

RESUMO

PURPOSE: With the development of nuclear technology and radiotherapy, the risk of radiation injury has been increasing. Therefore, it is important to find an effective radiation-protective agent. In this study, we designed and synthesized a novel compound called compound 8, of which the radioprotective effect and mechanism were studied. MATERIALS AND METHODS: Before being exposed to ionizing radiation, mice were pretreated with compound 8. The 30-day mortality assay, hematoxylin-eosin staining, and immunohistochemistry staining assay were performed to evaluate the anti-radiation effect of the compound 8. TUNEL and immunofluorescence assays were conducted to study the anti-radiation mechanism of compound 8. RESULTS: Compared to the IR + vehicle group, the 30-day survival rate of mice treated with 25 mg/kg of compound 8 was significantly improved after 8 Gy total body irradiation. In the morphological study of the small intestine, we found that compound 8 could maintain crypt-villus structures in the irradiated mice. Further immunohistochemical staining displayed that compound 8 could improve the survival of Lgr5+ cells, ki67+ cells, and lysozyme+ cells. The results of TUNEL and immunofluorescence assays showed that compound 8 could decrease the expression of apoptosis-related caspase-8/-9, γ-H2AX, Bax, and p53. CONCLUSIONS: These results indicate that compound 8 exerts its effects by maintaining structure and function of small intestine. It also reduces DNA damage, promotes crypt proliferation and differentiation. Moreover, it may enhance the anti-apoptotic ability of small intestinal tissue by inhibiting the activation of p53 and blocking the caspase cascade reaction. Compound 8 can protect the intestinal tract from post-radiation damage, it is thus a new and effective protective agent of radiation.


Assuntos
Lesões Experimentais por Radiação , Protetores contra Radiação , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/metabolismo , Intestino Delgado , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Radiação Ionizante , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Apoptose/efeitos da radiação , Camundongos Endogâmicos C57BL
11.
J Cell Mol Med ; 27(2): 246-258, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579449

RESUMO

Radiation-induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) -induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti-injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation-induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation-induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation-induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.


Assuntos
Colite , Receptores de Calcitriol , Animais , Camundongos , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Lesões Experimentais por Radiação
12.
Free Radic Res ; 56(5-6): 411-426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201846

RESUMO

Oxidative stress injury and subsequent inflammatory response are considered to play critical roles in radiation-induced lung injury (RILI). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates oxidative stress response and represses inflammation, but its therapeutic value in RILI remains elusive. Our previous studies have shown that the near-infrared (NIR) IR-61 dye evokes intracellular antioxidant defense by enhancing Nrf2 signaling and promoting anti-inflammatory effects. We established a model of RILI in mice exposed to whole-thoracic irradiation. The results showed that IR-61 treatment notably improved pulmonary functions by decreasing lung density and diminishing airway resistance. In addition, IR-61 significantly ameliorated radiation-induced inflammatory cell infiltration and proinflammatory cytokine (IL-1ß, IL-6, and TNF-α) release, thereby mitigating inflammatory response. Furthermore, IR-61 mitigated radiation-induced lung fibrosis by decreasing the collagen deposition and the levels of fibrogenesis-related factors (collagen I, collagen III, α-SMA, and fibronectin). More importantly, IR-61 was found to accumulate in the mitochondria of macrophages in irradiated lung tissues. Therefore, the functions of IR-61 in macrophages were further studied in irradiated macrophage cell lines, MH-s and RAW 264.7 in vitro. The results indicated that IR-61 upregulated the expression of Nrf2 and heme oxygenase-1 (HO-1) and decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines (IL-1ß and IL-6) in macrophages after radiation. In summary, our study suggests that IR-61 effectively mitigates RILI by activating Nrf2 signaling in irradiated lung tissues. In particular, Nrf2-mediated anti-inflammatory and antioxidant effects in irradiated lung tissue macrophages play critical roles in protecting against RILI.


Assuntos
Corantes , Lesão Pulmonar , Fator 2 Relacionado a NF-E2 , Lesões Experimentais por Radiação , Animais , Camundongos , Antioxidantes/metabolismo , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-6 , Lipopolissacarídeos , Pulmão , Lesão Pulmonar/tratamento farmacológico , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Corantes/farmacologia
13.
Front Immunol ; 13: 927213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110845

RESUMO

Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.


Assuntos
Células-Tronco Hematopoéticas , Compostos Organofosforados , Lesões Experimentais por Radiação , Receptor 4 Toll-Like , Animais , Apoptose , Diferenciação Celular , Glucosamina/análogos & derivados , Glucosamina/farmacologia , Células-Tronco Hematopoéticas/citologia , Mucosa Intestinal , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Compostos Organofosforados/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Receptor 4 Toll-Like/genética
14.
Sci Rep ; 12(1): 3485, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241733

RESUMO

The threat of a nuclear attack has increased in recent years highlighting the benefit of developing additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30-90% as compared to saline control treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 24 h post-TBI.


Assuntos
Síndrome Aguda da Radiação , Materiais Biomiméticos , Sistema Hematopoético , Trombopoetina , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Animais , Materiais Biomiméticos/farmacologia , Sistema Hematopoético/patologia , Sistema Hematopoético/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Trombopoetina/farmacologia , Irradiação Corporal Total
15.
Int J Radiat Biol ; 98(8): 1316-1329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130116

RESUMO

PURPOSE: To clarify the preventive and therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on brain injury induced by X-ray cranial irradiation, preliminarily identify the mechanism and provide a novel clinical approach for the prevention and treatment of radiation-induced brain injury (RBI). MATERIALS AND METHODS: Male C57BL/6 mice were randomly divided into the sham group, large fractionated dose (5 Gy × 4 d) group, large fractionated dose + rTMS (5 Gy × 4 d + rTMS) group, conventional fractionated dose (2 Gy × 10 d) group and conventional fractionated dose + rTMS (2 Gy × 10 d + rTMS) group. After cranial irradiation and rTMS, behavioral experiments, morphological staining and molecular biology experiments were performed. We further determined the mechanism of rTMS on the prevention and treatment of RBI, including changes in hippocampal neuronal apoptosis, neural stem cell (NSC) proliferation and differentiation, and neuronal synaptic plasticity. RESULTS: rTMS alleviated the negative effects of cranial radiation on the general health of mice and promoted their recovery. rTMS ameliorated the impairment of spatial learning and memory induced by cranial radiation, and this beneficial effect was more robust in the conventional fractionated dose group than the large fractionated dose group. Moreover, rTMS alleviated the alterations in hippocampal structure and neuronal death and had preventive and therapeutic effects against RBI. In addition, rTMS reduced hippocampal cell apoptosis, promoted NSC proliferation and differentiation in the hippocampus after cranial irradiation, and enhanced neuronal synaptic plasticity in the hippocampus. Subsequent studies showed that rTMS upregulated the expression of learning- and memory-related proteins. CONCLUSION: rTMS could alleviate learning and memory impairment caused by RBI, and the preventive and therapeutic effects of rTMS were better for the conventional fraction radiation paradigms.


Assuntos
Lesões Encefálicas , Lesões Experimentais por Radiação , Estimulação Magnética Transcraniana , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Lesões Experimentais por Radiação/terapia , Resultado do Tratamento
16.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216156

RESUMO

Male pediatric survivors of cancers and bone marrow transplantation often require adjuvant chemoradiation therapy that may be gonadotoxic. The optimal methods to preserve fertility in these prepubertal males are still under investigation. This manuscript presents an in vivo experiment which involved transplantation of immature testicular tissues (ITT) from transgenic donor, to wild-type recipient mice. Donors and recipients were age-mismatched (from 20-week-old donors to 3-week-old recipients, and vice versa) and the transplantation sites involved the abdomen, skin of the head, back muscle, and scrotum. The application of poly-l-lactic acid (PLLA) scaffold was also evaluated in age-matched donors and recipients (both 3-weeks-old). To quantitively evaluate the process of spermatogenesis after ITT transplantation and scaffold application, bioluminescence imaging (BLI) was employed. Our result showed that ITT from 3-week-old mice had the best potential for spermatogenesis, and the optimal transplantation site was in the scrotum. Spermatogenesis was observed in recipient mice up to 51 days after transplantation, and up to the 85th day if scaffold was used. The peak of spermatogenesis occurred between the 42nd and 55th days in the scaffold group. This animal model may serve as a framework for further studies in prepubertal male fertility preservation.


Assuntos
Preservação da Fertilidade/métodos , Infertilidade Masculina/terapia , Espermatogênese , Testículo/citologia , Engenharia Tecidual/métodos , Animais , Infertilidade Masculina/etiologia , Masculino , Camundongos , Poliésteres/química , Lesões Experimentais por Radiação/complicações , Testículo/crescimento & desenvolvimento , Testículo/fisiologia , Tecidos Suporte/química
17.
Int J Radiat Oncol Biol Phys ; 113(2): 390-400, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143888

RESUMO

PURPOSE: Cranial radiation therapy for the treatment of pediatric brain tumors results in changes to brain development that are detectable with magnetic resonance imaging. We have previously demonstrated similar structural changes in both humans and mice. The goal of the current study was to examine the role of inflammation in this response. Because neuroanatomic volume deficits in pediatric survivors are more pronounced in female patients, we also evaluated possible dependence on sex. METHODS AND MATERIALS: Other studies have shown that male mice deficient in the C-C chemokine ligand 2 gene (Ccl2; previously Mcp-1) have a muted neuroinflammatory response after irradiation. We irradiated Ccl2-/- (HOM; female = 12, male = 13), Ccl2-/+ (HET; female = 13, male = 16), and Ccl2+/+ (WT; female = 11, male = 13) mice with a whole brain dose of 7 Gy during infancy. Control mice (with approximately equal group sizes) were anesthetized but not irradiated. In vivo magnetic resonance images were acquired at 4 time points up to 3 months after irradiation, and deformation-based morphometry was used to identify volume differences. RESULTS: Irradiation of WT mice resulted in a deficit in neuroanatomic growth with limited sex dependence. HOM and HET male mice were significantly protected from this radiation-induced damage, whereas HOM and HET female mice were not. CONCLUSIONS: Interventions aimed at mitigating the effects of cranial radiation therapy in pediatric cancer survivors by modulating inflammatory response will need to consider patient sex.


Assuntos
Encéfalo , Quimiocina CCL2 , Irradiação Craniana , Lesões Experimentais por Radiação , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Quimiocina CCL2/deficiência , Irradiação Craniana/efeitos adversos , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/metabolismo
18.
Exp Eye Res ; 216: 108947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074344

RESUMO

Zebrafish possess the ability to completely regenerate the retina following injury, however little is understood about the damage signals that contribute to inducing Müller glia reprogramming and proliferation to regenerate lost neurons. Multiple studies demonstrated that iron contributes to various retinal injuries, however no link has been shown between iron and zebrafish retinal regeneration. Here we demonstrate that Müller glia exhibit transcriptional changes following injury to regulate iron levels within the retina, allowing for increased iron uptake and decreased export. The response of the zebrafish retina to intravitreal iron injection was then characterized, showing that ferrous, and not ferric, iron induces retinal cell death. Additionally, iron chelation resulted in decreased numbers of TUNEL-positive photoreceptors and fewer proliferating Müller glia. Despite the contribution of iron to retinal cell death, inhibition of ferroptosis did not significantly reduce cell death following light treatment. Finally, we demonstrate that both the anti-ferroptotic protein Glutathione peroxidase 4b and the Transferrin receptor 1b are required for Müller glia proliferation following light damage. Together these findings show that iron contributes to cell death in the light-damaged retina and is essential for inducing the Müller glia regeneration response.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Compostos Ferrosos/toxicidade , Células Fotorreceptoras/efeitos dos fármacos , Lesões Experimentais por Radiação/etiologia , Degeneração Retiniana/induzido quimicamente , Animais , Animais Geneticamente Modificados , Apoptose , Deferiprona/farmacologia , Células Ependimogliais/metabolismo , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Luz , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células Fotorreceptoras/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Receptores da Transferrina/metabolismo , Degeneração Retiniana/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
19.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35041620

RESUMO

Total body irradiation (TBI) targets sensitive bone marrow hematopoietic cells and gut epithelial cells, causing their death and inducing a state of immunodeficiency combined with intestinal dysbiosis and nonproductive immune responses. We found enhanced Pseudomonas aeruginosa (PAO1) colonization of the gut leading to host cell death and strikingly decreased survival of irradiated mice. The PAO1-driven pathogenic mechanism includes theft-ferroptosis realized via (a) curbing of the host antiferroptotic system, GSH/GPx4, and (b) employing bacterial 15-lipoxygenase to generate proferroptotic signal - 15-hydroperoxy-arachidonoyl-PE (15-HpETE-PE) - in the intestines of irradiated and PAO1-infected mice. Global redox phospholipidomics of the ileum revealed that lysophospholipids and oxidized phospholipids, particularly oxidized phosphatidylethanolamine (PEox), represented the major factors that contributed to the pathogenic changes induced by total body irradiation and infection by PAO1. A lipoxygenase inhibitor, baicalein, significantly attenuated animal lethality, PAO1 colonization, intestinal epithelial cell death, and generation of ferroptotic PEox signals. Opportunistic PAO1 mechanisms included stimulation of the antiinflammatory lipoxin A4, production and suppression of the proinflammatory hepoxilin A3, and leukotriene B4. Unearthing complex PAO1 pathogenic/virulence mechanisms, including effects on the host anti/proinflammatory responses, lipid metabolism, and ferroptotic cell death, points toward potentially new therapeutic and radiomitigative targets.


Assuntos
Araquidonato 15-Lipoxigenase/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Leucotrienos/genética , Peróxidos Lipídicos/genética , Pseudomonas aeruginosa/efeitos da radiação , Lesões Experimentais por Radiação/genética , Animais , Araquidonato 15-Lipoxigenase/biossíntese , Células CACO-2/efeitos da radiação , Feminino , Humanos , Leucotrienos/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/patogenicidade , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia
20.
Biochem Biophys Res Commun ; 595: 7-13, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091109

RESUMO

The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-ß mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.


Assuntos
Ferroptose/fisiologia , Intestinos/patologia , Quinoxalinas/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Radiação Ionizante , Compostos de Espiro/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Glutationa/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/efeitos da radiação , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...